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Numerical simulations are presented which, in conjunction with the accompanying ex- 
perimental investigation by Petitjeans & Maxworthy ( 1996), are intended to elucidate 
the miscible flow that is generated if a fluid of given viscosity and density displaces 
a second fluid of different such properties in a capillary tube or plane channel. The 
global features of the flow, such as the fraction of the displaced fluid left behind on 
the tube walls, are largely controlled by dimensionless quantities in the form of a 
Peclet number Pe, an Atwood number At, and a gravity parameter. However, further 
dimensionless parameters that arise from the dependence on the concentration of 
various physical properties, such as viscosity and the diffusion coefficient, result in 
significant effects as well. 

The simulations identify two distinct P e  regimes, separated by a transitional re- 
gion. For large values of Pe, typically above 0(103), a quasi-steady finger forms, 
which persists for a time of O ( P e )  before i t  starts to decay, and Poiseuille flow and 
Taylor dispersion are approached asymptotically. Depending on the strength of the 
gravitational forces, we observe a variety of topologically different streamline pat- 
terns, among them some that leak fluid from the finger tip and others with toroidal 
recirculation regions inside the finger. Simulations that account for the experimen- 
tally observed dependence of the diffusion coefficient on the concentration show the 
evolution of fingers that combine steep external concentration layers with smooth 
concentration fields on the inside. In the small-Pe regime, the flow decays from the 
start and asymptotically reaches Taylor dispersion after a time of O ( P e ) .  

An attempt was made to evaluate the importance of the Korteweg stresses and the 
consequences of assuming a divergence-free velocity field. Scaling arguments indicate 
that these effects should be strongest when steep concentration fronts exist, i.e. at 
large values of P e  and At .  However, when compared to the viscous stresses, Korteweg 
stresses may be relatively more important at lower values of these parameters, and we 
cannot exclude the possibility that minor discrepancies observed between simulations 
and experiments in these parameter regimes are partially due to these extra stresses. 

1. Introduction 
The present computational investigation intends to shed further light on the exper- 

iments reported in the companion paper by Petitjeans & Maxworthy (1996), hereafter 
referred to as Part 1. Those authors investigate the displacement of a viscous fluid 
in a capillary tube by another one of different viscosity and density. Various flow 
regimes are observed as a function of the governing parameters, which consist of 
the dimensionless velocity in the form of a Peclet number Pe, the viscosity ratio 
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denoted by an Atwood number At, and a parameter F that represents the ratio of 
gravitational and viscous forces. The experiments serve to determine the dependence 
of such global quantities as the fraction of displaced fluid left behind on the tube 
walls on these parameters. In Part 1 it is demonstrated that the finger tip can display 
fundamentally different dynamics in the various parameter regimes, in analogy to 
earlier suggestions by Taylor (1961) for the case of immiscible fluids. For example, 
the experiments show the formation of a ‘needle’ protruding from the finger tip if less 
than half of the displaced fluid stays behind on the tube walls. 

The numerical simulations to be reported below are intended to provide us with 
detailed information on the spatio-temporal development of the velocity and concen- 
tration fields, and thereby to supplement the experimentally obtained data, and to aid 
in their understanding and interpretation. The combined information extracted from 
experiments and simulations, in turn, can serve as a basis for the derivation and valida- 
tion of a number of scaling laws. These scaling laws will be applicable in various limits 
of the governing parameters, which leads to a description of disctinctly different flow 
regimes, particularly in terms of the Peclet number. Eventually, the scaling arguments 
derived here are expected to bring us closer to the development of the kind of simpli- 
fied models needed for large-scale miscible two-phase porous-media flow simulations. 

Numerical simulations can furthermore be helpful in the evaluation of the impor- 
tance of those physical effects that are not included in the computational model, but 
that may be present in the real flow. For the present situation of incompressible, 
miscible two-phase flows, Joseph (1990) and coworkers (Joseph & Renardy 1993, and 
references therein) have pointed out the potential significance of additional stresses 
due to concentration gradients, as first discussed by Korteweg (1901). They further- 
more emphasize that the assumption of vanishing divergence of the velocity field 
holds only approximately, even if the diffusion of the fluids into each other does 
not result in a volume change. Neither of these effects is included in our numerical 
simulations, so that the level of agreement with the experimental observations can 
provide an indication of their importance for the particular flow under consideration. 

The outine of the paper is as follows. In $2, we formulate the governing equations 
in non-dimensional form and derive the relevant dimensionless parameters. Section 3 
discusses the computational approach and provides information on its validation. 
Results for miscible two-phase flows in capillary tubes are presented in $4, while 
the two-dimensional plane channel case is treated separately in an Appendix. We 
will place particular emphasis on the distinctly different dynamics observed for large 
and small Peclet number situations. Both of these regimes are analysed in detail, 
and we discuss their relationships with both the immiscible experiments of Taylor 
(1961) and Cox (1962), and the investigation of the dispersion of a passive scalar 
by Taylor (1953). While the simulations of $4 employ a constant molecular diffusion 
coefficient, the experimental observations in Part 1 suggest a strong dependence of 
this coefficient on the concentration. Section 5 presents simulation results for this 
case. Section 6 investigates the importance of the above-mentioned Korteweg stresses, 
as well as of the divergence of the velocity field. Finally, a brief summary as well as 
some conclusions are provided in $7. 

2. Governing equations 
We address the problem of the slow displacement, in an axisymmetric tube or a 

plane channel, of a fluid with dynamic viscosity p2 by a second fluid with a viscosity 
of pl. The numerical simulations to be discussed in the following are to complement 
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the experiments described in the companion paper, Part 1. Since in those experiments 
the Reynolds number Re consistently is 0(1) or less, we can neglect the influence of 
nonlinear inertial terms on the balance of momentum and base our analysis on the 
equations governing incompressible Stokes flow. The conservation of species gives 
rise to an additional convection-diffusion equation for the relative concentration c 
of fluid 2. We adopt the standard set of equations commonly employed to simulate 
incompressible miscible two-phase flows 

v . u  = 0, 

Vp = V(pV)u  + pge,, 

(2.3) 
L3 c 
- + U -  VC = DV2c. 
3t 

Here u = ( u , v )  denotes the fluid velocity vector, p pressure, and t time, while p and p 
indicate the dynamic viscosity and density, respectively. Gravity has the magnitude g 
and points in the direction of the unit vector eg, which is assumed to be either parallel 
or antiparallel to the main flow direction, so that symmetry around the centreline can 
be assumed. In the first part of the investigation, the diffusion coefficient D is taken to 
be constant, which represents a considerable simplification, as the experimental mea- 
surements of Part l demonstrate its dependence on the concentration. Consequently, 
in 45 we will explore the influence of a variable diffusion coefficient. Both density and 
viscosity are assumed to be functions of concentration only 

LJ = P(C),  P = P ( C ) .  

Recently, several researchers, most notably Joseph and coworkers, have drawn re- 
newed attention to the fact that the above system of equations represents an approxi- 
mation, and to the potential role played by additional stresses in miscible flows, an is- 
sue already discussed by Korteweg (1901). Joseph & Renardy (1993) provide an exten- 
sive discussion of the relevant physical issues and their proper mathematical modelling. 
As was already pointed out by Joseph (1990), there are two separate effects of poten- 
tial importance. Firstly, if the density of the mixture of miscible fluids depends on the 
concentration, the velocity field is n o  longer divergence free, even though the fluid is in- 
compressible. This can be seen immediately from the continuity equation, which reads 

= --pv.u dp 
dt 

where 
d d  
- = - + u - v .  
dt at  

As the density of a fluid element changes continuously due to diffusion, the divergence 
of the velocity field does not vanish, thereby giving rise to an additional stress tensor in 
the momentum equation. Joseph & Hu (1991) find that, under certain conditions, these 
stresses can act in a fashion similar to surface tension in the region of contact between 
two miscible liquids. Since the magnitude of these stresses depends on some (unknown) 
material properties of the mixture, it is difficult to provide values for their absolute 
magnitude. However, in 46 we will present scaling arguments that allow us to estimate 
their importance for the type of flow field considered in the present investigation. 

The second source of additional stresses in miscible liquids discussed by Joseph 
& Hu (1991) originates in the different chemical potentials of the two liquids, cf. 
also Davis (1988). Again, an unknown material quantity renders an estimation of 
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their magnitude difficult, but scaling arguments can provide some limited information, 
cf. $6. 

At the wall, we have the conventional boundary conditions of no normal flow 
and no slip, as well as vanishing normal derivatives of the concentration field. 
Since our interest lies mostly in the long-time asymptotic nature of the velocity and 
concentration fields far away from the tube ends, as opposed to the detailed flow 
features near the inlet and outlet, we consider the situation of a pipe or channel 
whose upstream half initially only contains fluid 1, while the downstream half is filled 
with fluid 2. For all times then, far upstream of the mixing region only fluid 1 will be 
present, while far downstream there will be pure fluid 2. In these regions, the velocity 
profile asymptotically approaches that of Poiseuille flow. We assume furthermore 
that the volumetric flow rate does not change with time. This is slightly different 
from the experimental situation, in which a constant pressure drop over the length of 
the tube leads to an increase in volume flux with time, as a result of the decreasing 
overall effective viscosity. However, this change in the flow rate occurs very slowly, so 
that the experimental results can be considered quasi-steady. For a capillary tube of 
diameter d, with the streamwise and radial directions denoted by x and r ,  respectively, 
the boundary conditions thus are 

dc 
ar dr 

= 0;  - au 
= 0, v = 0, r = O :  - 

d 
2 '  

r = - .  

x-+--co: 

x + m :  

u = 0, u = 0, 

u(r)  = u (1 - g) , 
ac 
ar  

= 0 ;  - 

c ( r )  = 0 ;  

c( r )  = 1. 

Here, U denotes the value of the Poiseuille flow velocity profile at the centreline, 
while u and u are the axial and radial velocity components, respectively. For the plane 
channel, the boundary conditions take the corresponding two-dimensional form. In 
order to render the above equations and boundary conditions dimensionless, we refer 
all velocities to U and all lengths to d. A characteristic pressure is provided by 
p * U / d ,  and all densities and viscosities are referred to p1 - p2 and p2, respectively. 
Consequently, the equations for the non-dimenensional variables take the form 

v - u  = 0, 
Vp = V(pV)u + Fpe,, 

ac 1 
at P e  
- + u - v c  = -v2c 

(2.10) 
(2.11) 

(2.12) 

with the boundary conditions 

ac 
ar 
- = 0; (2.13) 

(2.14) r = 0.5 : u = 0, v = 0, 

x - + - m :  u(r)  = 1 - 4r2, c ( r )  = 0; (2.15) 
x + m :  u(r)  = 1 - 4r2, c ( r )  = 1. (2.16) 

As the governing dimensionless parameters we identify a Pkclet and a gravity number. 

ac 
ar 

= 0;  - 
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In addition, the fluid properties provide a dimensionless viscosity ratio in the form of 
an Atwood number 

(2.17) 

Notice that the above dimensionless parameters are formed with the centreline velocity 
of the Poiseuille flow profile. It should furthermore be pointed out that the above 
approach implies that the Schmidt number 

1) 
s c  = - 

D (2.18) 

tends to infinity, as we consider convective effects to be of importance in the species 
conservation equation, but not in the momentum equation. In order to obtain a 
closed system of equations and boundary conditions, it remains to specify how the 
viscosity and density depend on the concentration. For most fluid mixtures, a linear 
density-concentration relationship represents a good approximation, so that we can 
write for the dimensionless density 

p=- p' +c.  (2.19) 
P2 - PI  

For the dependence of the dimensionless viscosity on the concentration we follow 
other authors (e.g. Tan & Homsy 1986; Rogerson & Meiburg 1993a,b) by specifying 
an exponential relationship 

(2.20) 

Here, R is related to At  by 

eR - 1 A t =  __ 
eR + 1 '  

(2.21) 

Notice, however, that for the water-glycerine system employed in Part 1, the (p,c)- 
relationship is closer to a doubly exponential function for glycerine concentrations 
above 20%. The possible importance of this point will be discussed further below. 

3. Computational approach 
Since we assume symmetry about the centreline of the tube or channel, it will be 

advantageous to express the governing equations and boundary conditions in terms 
of a streamfunction formulation. In this way, the pressure variable is eliminated, 
and the continuity equation is satisfied identically. For axisymmetric flow, we obtain 
the following relationships between the scalar streamfunction and the velocity 
components : 

By cross-differentiating and combining the two components of the momentum equa- 
tion, we obtain for the streamfunction 

F ac v4v = -g(x,r) + -r- ,  
P d r  
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a 4  a 4  + -> v =--2- 
dr4 ar2ax2 ax4 

4 a4 

For the species conservation equation, we obtain 

( l a  (i;) :;). (3.3) 
ac l a v  ac 1 ayac  
at r dr  ax r ax d r  Pe r a r  
- +  = -  _ _  y -  +- 

Again, for the plane channel flow, the above relationships take their corresponding 
forms in Cartesian coordinates. Boundary conditions for y have to be specified such 
that both the wall and the centreline are streamlines. We arbitrarily set the value of 
the streamfunction at the centreline to zero. By requiring its wall value to be 0.125, 
we ensure that the volume flux through the tube is equal to that of Poiseuille flow 
with unit centreline velocity. Furthermore, the no-slip condition at the wall causes 
the wall-normal derivative of y at the wall to vanish. At the centreline, the symmetry 
condition for the streamwise velocity component results in 

so that we obtain the condition that the derivative of the streamfunction in the 
direction normal to the centreline has to vanish as well. Consequently, the set of 
boundary conditions for y takes the form 

(3.5) 

(3.6) 

For reasons of computational efficiency, most of our simulations will employ a 
control volume that is moving in the direction of the flow with a possibly time- 
dependent velocity V approximately equal to the propagation speed of the advancing 
concentration front. The use of such a moving control volume allows us to take 
the simulation to long times without having to discretize large regions of nearly 
unperturbed Poiseuille flow. In the reference frame of this moving control volume, 
the fluid velocity at the wall becomes -V, so that there the boundary condition on 



Miscible displacements in capillary tubes. Part 2 63 
the normal derivative of the streamfunction changes to 

For simplicity, from now on x will refer to the streamwise coordinate in this moving 
reference frame. In terms of this coordinate, the moving computational control volume 
typically extends from the inflow boundary, located a short distance upstream of the 
advancing front at x = 0, to the outflow boundary, which is located downstream of 
the front at x = L. Depending on the particular flow conditions, both the upstream 
and the downstream borders can become mixed inflow/outflow boundaries. The 
boundary conditions to be specified at these locations have to be able to handle 
such situations without causing any disturbances to propagate into the interior of 
the computational domain. In the present investigation, we impose the boundary 
conditions of a vanishing second streamwise derivative for the concentration, and 
vanishing second and fourth derivatives for the streamfunction 

Here, the last condition corresponds to a vanishing second derivative of the vorticity in 
the more traditional streamfunction-vorticity formulation. Test results to be presented 
in the next section will demonstrate the appropriateness of these boundary conditions. 

The above system of partial differential equations (2.12), (3.2), subject to the 
boundary conditions ( 3 3 ,  (3.6), (3.8) is integrated numerically by combining an AD1 
scheme (Fletcher 1988) for the concentration equation with a multigrid approach 
(Brandt 1977) for the elliptic streamfunction equation. At time t = 0, a one- 
dimensional concentration field in the form of an error function is specified, along with 
a Poiseuille flow velocity profile throughout the entire length of the tube. Subsequently, 
the concentration equation is used to advance the calculation in discrete time steps. 
The velocity field is evaluated from the streamfunction equation at every intermediate 
and full time step. The formulation of computational boundary conditions at the 
intermediate time step levels poses no problems due to the nature of the mathematical 
boundary conditions. 

The concentration equation is discretized by means of four-point, third-order 
upwind stencils for the convective terms (Fletcher 1988) 

dc 
ax 2Ax 

c,+1 - c,-I ci-2 - 3C,-l + 3ci - Ci+l 

6Ax 
u > o : - =  + > 

ac 

ax 2Ax 
Ci+l  - c;-1 ci-1 - 3ci + 3Ci+l - ci+* 

6Ax 
u < o : - =  + , 

(3.9) 

(3.10) 

with corresponding expressions in the radial direction. The diffusive terms are 
represented by five-point, fourth-order central stencils. At all boundaries, both the 
convective and the diffusive terms are discretized by second-order central stencils. 
The streamfunction equation is discretized by second-order central stencils as well. 

3.1. Validation 
A few obvious and somewhat trivial test cases concern the one-dimensional self- 
similar diffusion of the initial concentration profile in the absence of flow, and the 
reproduction of Poiseuille flow throughout the tube for the case of equal viscosities. 
In addition, we carried out validation studies for different grid spacings and time 
steps in order to establish appropriate discretization levels as a function of Pe ,  and 
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FIGURE 1. Concentration contours at times 0, 1, and 3 for R = 5, F = 0, and P e  = 1600. Notice the 
formation of an axisymmetric finger with a steep concentration front at its tip. 

to test the convergence properties of the computational procedures. Such calculations 
demonstrated that quantities of interest, such as the finger propagation velocity, have 
converged to within less than 1% for PeAx = 6.25, which hence serves as our criterion 
for selecting the grid spacing, taken to be equal in both directions, as a function of 
Pe.  To advance the calculation in time, we apply a constant time step At = 0.005, 
which was established by means of test calculations. Finally, we simulated identical 
physical situations with computational domains of different sizes, in order to establish 
the validity of the inflow and outflow boundary conditions. The results of these test 
calculations, some of which will be described in more detail below, demonstrated 
the stablity and convergence of the computational approach. The comparison with 
the experimental data of Part 1 in itself of course represents a further check of the 
numerical results, as do scaling laws to be presented below. 

4. Results 
4.1. P e  2 0(103) 

The evolution of the flow in this parameter regime is exemplified by the case P e  = 1600 
and R = 5 (At  = 0.9866), shown in figure 1 in the moving reference frame. The levels 
of the plotted concentration contours are c = 0.1, 0.3, ..., 0.9. Gravity is absent 
for this flow, i.e. F = 0. As described above, the initial condition specifies a one- 
dimensional error-function profile for the concentration, along with axisymmetric 
Poiseuille flow for the velocity components. The velocity field immediately results in 
a strong deformation of the concentration distribution in the interior of the tube, 
while at the wall concentration changes are the result of diffusion only. The transient 
evolution of the concentration distribution, in turn, causes corresponding changes 
in the viscosity field, thereby modifying the velocity field. This effect distinguishes 
the present situation from the one analysed by Taylor (1953), in which there is no 
feedback by the concentration distribution onto the velocity field. For the present 
parameters, we observe the development of a well-defined finger of the less-viscous 
fluid in the centre of the tube. The finger tip consists of a steep concentration front, 
while its sides are formed by diffusively spreading concentration layers. In order 
to test the validity of the computational inflow and outflow boundary conditions, 
the same physical situation was simulated in a larger control domain, cf. figure 2. 
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FIGURE 2 .  The same flow as in figure 1, simulated in a larger computational domain, at t = 1.75. 
The concentration contours for the two different computational domain sizes are virtually identical, 
indicating that both the numerical inflow and outflow boundary conditions as well as the domain 
size do not affect the solution. 

I .o 
0 2 4 6 

Time 
FIGURE 3. The finger tip velocity, defined as the propagation velocity of the c = 0.5 contour, as a 
function of time for R = 5, F = 0, and Pe  = 1600. Both the tip velocity and the concentration 
contours indicate the emergence of a quasi-steady state for the present parameters. 

When plotted in the same figure, the contours of the two simulations are virtually 
indistinguishable, which indicates that the mixed inflow/outflow boundary at x = 0 
is handled well by the present set of numerical boundary conditions, as there are 
no detectable disturbances propagating from the boundary into the computational 
domain. The comparison further establishes that the smaller computational domain 
yields the correct finger tip velocity iftfp and film thickness. 

By the time t = 2, the finger tip shape and the associated concentration field have 
reached a quasi-steady state, in the reference frame moving with the finger tip. This 
is confirmed by figure 3, which depicts the propagation velocity of the finger tip as 
a function of time. Unless otherwise stated, from here on the tip velocity is defined 
as the velocity with which the c = 0.5 contour propagates along the tube’s axis. Note 
that the propagation velocity of the contour is smaller than the instantaneous fluid 
velocity at its location, due to the effect of diffusion. This effect diminishes with 
increasing Pe. The accompanying streamline pattern in the reference frame moving 
with the tip velocity (figure 4) shows the existence of a stagnation point at the tip, 
along with an associated strain field, as predicted by Taylor (1961) for the case of an 
immiscible two-phase flow in which over half of the displaced fluid is left behind on 
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0 0.5 1 .o 1.5 
X 

FIGURE 4. The streamline pattern in the reference frame moving with the finger tip velocity, 
for R = 5, F = 0, and P e  = 1600 at t = 3. Since the propagation velocity is larger than the 
centreline velocity of the Poiseuille flow, the tip region has the character of a stagnation point flow 
field. Compression in the axial direction balances the effects of diffusion in maintaining a steep 
concentration front. 

FIGURE 5. ac/dx(r = 0) for R = 5, F = 0, and P e  = 1600. From right to left, the curves correspond 
to times 1, 2, 3, 4, and 5, respectively. The shift of the contours with time is a result of the moving 
reference frame. These concentration derivative profiles confirm the existence of the quasi-steady 
state. 

the tube wall. For this case of immiscible displacement, the streamline pattern near 
the finger tip is steady in the moving reference frame, and the streamline originating 
from the stagnation point denotes the interface between the two fluids. For the 
present, miscible flow this separatrix still tracks the concentration layer; however, due 
to diffusion, both fluids are present on both sides of it. The concentration derivative 
along the centreline &/i3x(x,r = 0) demonstrates the emergence of a quasi-steady 
state as well (figure 5). Notice that, due to the moving reference frame, the location of 
the maximum concentration derivative moves to smaller x with increasing time. This 
figure quantifies the steepness of the concentration front at the finger tip, which is 
determined by the local balance of strain and diffusion. An estimate for the strength 
a of the local strain field can be obtained by realizing that it is determined by the 
difference of the streamwise velocities ahead of and behind the finger tip. This velocity 
difference of approximately 2( V,, - U )  is achieved over a distance comparable to the 
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tube radius, so that we obtain 

Notice that here, as well as in the following, scaling arguments are usually given in 
terms of dimensional quantities. A straightforward one-dimensional balance of strain 
and diffusion effects on the concentration field according to 

then yields for the front thickness do at the finger tip 

which indicates that the front thickness scales with the square root of the inverse of a 
modified Peclet number formed with the velocity difference across the finger tip. For 
the present case, this yields & / d  m 1/30, which is in good agreement with figure 5. 
The one-dimensional analysis furthermore gives 

(4.4) 

which for the present parameters yields approximately 17. Considering the rough 
estimate of the strain intensity, along with the one-dimensional simplification of 
the balance argument, the agreement with the computational results of figure 5 
is reasonable, confirming that the concentration field near the finger tip is indeed 
determined by a nearly one-dimensional balance of strain and diffusion. 

On the sides of the finger, the concentration layers grow diffusively with increasing 
distance from the finger tip, cf. figures 1 and 2. These layers will merge when 
their local thickness becomes comparable to the tube radius, i.e. when 6 / d  w 0.5. 
Straightforward scaling yields 

Here t is the time period over which the concentration layer has spread diffusively. 
This layer is thickest near the root of the finger, where it has been diffusing for a time 
that can be estimated by the finger’s instantaneous length Lf  and its tip velocity Vtip: 

Lf 
vcrp 

tw--. (4.6) 

Consequently, the diffusion layers will merge at the root of the finger, once it has 
reached a length 

Lf  Pe  
a 4  

m -  - (4.7) 

Subsequently, the supply of uncontaminated fluid to the tip region will gradually be 
cut off, and eventually the quasi-steady state will begin to decay. The above scaling 
laws indicate that we can neither employ a sufficiently large computational domain, 
nor can we carry the simulation to times that are sufficiently long to capture these 
effects for the present set of parameters. 

For practical considerations, a relevant quantity is the fraction of more-viscous 
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FIGURE 6. The quasi-steady finger tip velocity as a function of 1 / P e  for R = 5 and F = 0. The 
figure indicates that for P e  = 1600 the finger velocity is within less than 1% of the extrapolated 
value for P e  --f m. 

fluid left behind on the walls of the tube once the quasi-steady state has developed. 
For immiscible flow, Taylor (1961) calculates this fraction (an effective ‘film thickness’ 
of the fluid) from the finger tip velocity as 

(4-8) 
u 

2 Vzip 

m=1--. 

The same relationship is employed in Part 1 in order to determine the fraction of 
fluid left behind on the tube wall for the present case of miscible displacement. In 
particular, it is of interest to record m = m(At) in the limit of infinitely large Pe. Since 
grid-based numerical simulations will not provide accurate results for this limit, we 
resort to an extrapolation procedure for V,, = f(Pe-’), cf. figure 6. As mentioned 
above, we keep PeAx constant in all calculations, so that numerical parameters 
have only a minimal effect on the variation of the tip velocity observed in figure 6. 
However, small inaccuracies in the evaluation of the tip velocity may be caused by the 
interpolation procedure used to determine the instantaneous location of the c = 0.5 
contour. Still, it is clear that the tip velocity for Pe  = 1600 is within less than 1% 
of the extrapolated value for Pe  + m. In view of the considerable computational 
cost associated with carrying out several simulations at different large Pe for each 
value of R in order to perform the extrapolation, we will in the following present 
the simulation results for Pe = 1600 in lieu of P e  -+ co. In this way, we arrive at 
the (m,At)-relationship depicted in figure 7. It needs to be pointed out that only 
the data for At >, 0.75 correspond to truly quasi-steady states for Pe  = 1600. Those 
calculations yielded concentration fields and propagation velocities of the c = 0.5 
contour that stayed constant for at least some time, cf. the discussion below. For 
R = 1 (At = 0.462), such a quasi-steady state was never fully reached, although for 
some length of time the propagation velocity varied quite slowly. This nearly constant 
tip velocity gives m < 0.5, at least partially due to finite-Pe effects, which lead to 
a diffusive slowing of the finger tip, and thereby to a reduced film thickness. For 
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comparison, the experimental values from Part 1 are shown as well. The agreement 
is resonable, although not perfect. Some of the possible reasons for the observed 
discrepancy, such as a variable diffusion coefficient or the influence of additional 
stresses which are not accounted for in the simulations, will be discussed below. 
Furthermore, there may be some small non-axisymmetric effects in the experiments, 
due to density differences between the two phases, cf. the discussion in Part 1. Finally, 
as pointed out above, the (p,c)-relationship of the fluids used in the experiments is 
somewhat different from that employed in the simulations. 

It should be mentioned that Yang & Yortsos (19961, based on the asymptotic 
transverse flow equilibrium ( T F E )  concept, find a quantitatively somewhat different 
dependence of the film thickness on the viscosity ratio, especially at high values of 
At. A careful evaluation of the assumptions underlying the TFE concept by these 
authors shows that they become less accurate in regions of steep transverse fronts, 
i.e. near the finger tip at large values of Pe. In this context, it is important to 
appreciate the crucial rule played by the finger tip in setting the overall width of 
the finger. As, for example, the early asymptotic work by Bretherton (1961) and 
the nonlinear calculations by Reinelt & Saffman (1985) show, the film thickness is 
completely determined by the flow in this region, where the TFE approach is least 
accurate, which explains the observed discrepancy. The finger shape obtained in the 
lattice gas simulations by Rakotomalala, Salin, & Watzky (1996), on the other hand, 
suggests good qualitative agreement with the present simulatons. 

It is interesting to note that the value m = 0.61 for the film thickness in the limit 
At ---f 1, Pe -+ GO agrees well with the observations by Cox (1962) for immiscible flow 
in the limit A t  --+ 1, Ca + co, where Ca denotes the capillary number. This indicates 
that as diffusion or surface tension, respectively, become very small, their dynamical 
significance decays to zero in a smooth fashion, so that the shape of the finger tip is 
determined by the viscosity contrast alone. 
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It should be emphasized that the above results apply to the quasi-steady state 
that will develop for certain parameters and persist for a finite time only. For finite 
values of Pe, this quasi-steady state eventually always decays. As will be discussed 
in more detail below, the concentration field then approaches the classical case of 
Taylor dispersion, so that the velocity of the c = 0.5 contour asymptotically decays 
to Vtip = 0.5, which, if substituted into equation (4.Q results in m = 0. This limiting 
value of m is appropriate from the point of view that for infinitely long times indeed 
all of fluid 2 will be expelled, due to the action of diffusion. However, in contrast 
to immiscible flows, a vanishing m does not indicate that there is no fluid 2 to be 
found upstream of the finger tip, defined in terms of the c = 0.5 contour. The above 
observations indicate the limited usefulness of defining the ‘finger tip’ location, as well 
as its velocity, in terms of the c = 0.5 contour. However, there is no obvious better 
definition of the finger tip for miscible displacements. 

An important question concerns the parameter values for which the above quasi- 
steady state will be observed. As discussed above, strain and diffusion have to balance 
each other in such a way that a steep concentration front can be maintained. This 
quasi-one-dimensional balance can only exist if the front thickness at the tip, h0, 
is significantly smaller than the tube diameter d. Consequently, there will be an 
intermediate range of diffusion values over which a gradual transition takes place. 
Beyond this transitional range, the strain can no longer maintain a sufficiently steep 
front. In other words, a transitional Pe-regime exists, below which the strain field will 
not be strong enough to counter the tendency of diffusion to smear out the finger 
front. The condition & / d  < C1, with C1<.1, leads to an estimate for this transitional 
Pe-regime. With the above relationship (4.3) and Vtip = 1.25U for R = 5 ,  we obtain 

d (4.9) 

For C1 = 1/10 and 1/20, this criterion yields Pe = 200 and 800, respectively. Since 
the finger velocity, and consequently the strength of the strain field, depend on R, we 
expect the transitional Pe-range to vary with R as well. Figure 7 shows a reduced 
tip velocity for decreasing R, resulting in a weaker strain field. Consequently, the 
transitional Pe will increase for smaller values of R. Notice that in the limit of 
R + 0 (At + 0), not even P e  -+ cc results in a quasi-steady concentration field at 
the finger tip, as the concentration contours are continuously being deformed by the 
Poiseuille flow profile, even though the propagation velocity of the c = 0.5 contour 
remains constant. Our numerical simulations for R = 5 show the development of 
a quasi-steady finger with a steep front for P e  > 800, and a diffusing finger tip for 
Pe < 400. These Pe-values are in reasonable agreement with the transitional range 
estimated above. For lower values of R, we obtain diffusing fingers even for Pe  = 800, 
again in line with the predicted trend. 

A comparison of figure 8 ( R  = 1, At = 0.462, Pe = 1,600 at t = 7) with figure 2 
demonstrates the effect of the viscosity ratio on the finger tip shape. Unless otherwise 
noted, in all following plots of the concentration field the contour levels are 0.1, 0.2, 
...., 1.0. For this smaller viscosity contrast, the finger tip is more pointed than before, 
so that the finger reaches its asymptotic width only much farther upstream of the tip. 
In addition, the concentration front at the tip is not nearly as steep as before, in spite 
of identical Pe values. The reason lies in the much weaker strain field near the finger 
tip, due to the fact that the tip velocity is very close to the centreline velocity of the 
Poiseuille flow. 
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FIGURE 8. Concentration field for R = 1, F = 0, and P e  = 1600 at t = 7. The tip velocity is close 
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FIGURE 9. Concentration field (top) and streamline pattern (bottom) in moving reference frame 
for R = -1, F = 0, and P e  = 1600 at (a) t = 2 and (b)  5. Here a more-viscous fluid displaces 
a less-viscous one. The topology of the streamline pattern, as well as its effect on the evolving 
concentration field, are discussed in the text. 

For the sake of completeness, we have also carried out simulations of cases in which 
a more-viscous fluid displaces a less-viscous one. For R = -1, F = 0, and P e  = 1600, 
figure 9 shows the concentration contours, as well as the streamline pattern in the 
reference frame moving with the instantaneous finger tip velocity, at times t = 2 and 
5. The streamline pattern at t = 2 is topologically equivalent to the one depicted in 
figure 3(c) of Taylor’s (1961) analysis of immiscible displacements. There is, however, 
an important distinction. While for Taylor’s case the finger’s surface is outlined by 
the streamline emanating from the upstream saddle, the finger in the present miscible 
displacement extends beyond the reverse flow region in the downstream direction. In 
the absence of diffusion, the downstream saddle would be found at the location where 
c = 0.5 on the centreline. However, since diffusion slows the contour down slightly, 
the saddle is displaced towards the inside of the finger tip. The fact that some of 
fluid 1 is located downstream of the saddle leads to a lengthening and thinning of 
the finger tip, since locally on the axis the u-velocity component is pointing away 
from the finger tip. As a result, there is no strain mechanism to balance diffusion, 
so that the concentration front at the finger tip becomes progressively smoother by 
time t = 5. The reverse flow region now extends beyond the upstream boundary of 
the computational domain. However, it is clear that a second saddle has to exist 
on the centreline somewhere upstream of the control volume, as Poiseuille flow is 
approached again, with a centreline velocity larger than that of the moving reference 
frame. Figure 10 confirms the above scenario. It displays the fluid velocity at the 
location of the c = 0.5 contour on the centreline, along with the velocities of the 
c = 0.5 and c = 0.9 contours themselves. The increasing distance between the c = 0.5 
and c = 0.9 contours reflects the spreading concentration front. 
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FIGURE 10. The fluid velocity (-) at the centreline location where c = 0.5, as well as the propagation 
velocities of the c = 0.5 (- - -) and c = 0.9 (- . - . -) contours, for the same parameters as in figure 9. 
It can be seen that a quasi-steady state does not develop. Furthermore, the different propagation 
velocities of the concentration contours indicate a progressive smoothing of the concentration field. 
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FIGURE 11. Concentration contours (c = 0.1,0.3, ..., 0.9) and streamline pattern in the moving 
reference frame for R = 5, F = 20.22, and P e  = 1600 at time t = 2.5. 

As a next step, we consider the effect of density differences in the presence of 
gravity on the flow. As mentioned before, the direction of gravity is aligned with the 
pipe, so that the axisymmetric nature of the flow is preserved. Positive values of the 
gravity parameter F correspond to the case of a denser fluid being displaced upwardly 
by a lighter fluid, or to lighter fluid being displaced by denser fluid in downward 
flow, with negative values of F indicating the opposite situation. In other words, for 
F > 0 the heavier fluid is always above the lighter one. Consequently, we expect the 
tip velocity to increase for F > 0, and to decrease for F < 0. Figure 11 demonstrates 
this influence for the case of R = 5, F = 20.22, and Pe  = 1600, which again results in 
the formation of a quasi-steady state. The tip now moves faster than in the reference 
case without gravity (shown in figures 1 to 5), thereby generating a stronger strain 
field and a steeper concentration front, cf. figures 12 and 13. The streamline pattern 
in the reference frame moving with the c = 0.5 contour is topologically equivalent to 
that without gravity, cf. figure 4. 

For negative values of F ,  the tip slows down compared to the no-gravity case. A 
weaker strain field results, so that, beyond a transitional range of gravity, a steep 
concentration front cannot be maintained, and a quasi-steady-state concentration 



Miscible displacements in capillary tubes. Part 2 73 

Kip 

Time 
FIGURE 12. Finger tip velocity for the flow shown in figure 11. The unstable density stratification 
leads to a larger finger tip velocity, as well as a stronger related strain field, as compared to the 
case without gravity. 
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FIGURE 13. dc/ax(r = 0) for R = 5, F = 20.22, and P e  = 1600. From right to left, the curves 
correspond to times 0.5, 1, 1.5, 2, and 2.5, respectively. The more intense strain results in a steeper 
concentration front at the finger tip. 

field does not develop. In spite of this, the propagation velocity of the c = 0.5 contour 
nearly reaches a constant value, as shown in figure 14 for various combinations of 
R and F that all result in V,, < 1. However, an overall more complex unsteady 
development takes place, as can be seen for R = 2,F = -27.06, and P e  = 1600. 
For these parameters, figure 15 shows the temporal evolution of the concentration 
field at times t = 4 and 10, along with the streamfunction at t = 10 in the reference 
frame moving with the c = 0.5 contour. The streamfunction field now exhibits a 
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FIGURE 14. Propagation velocity of the c = 0.5 contour as a function of time for: R = 2, 
F = -27.06 (- - -); R = 3, F = -49.8 (. . .); R = 4, F = -54.94 (- . - . -); R == 5, F = -47.16 (-). 

0.5 

r 

0 
0.5 

r 

0 1 2 3 4 5 6 

r 

0 1 2 3 4 5 6 

X 

RGURE 15. (a) Unsteady evolution of the concentration field for R = 2, F = -27.06, and Pe = 1600 
at times t = 4 and 10, as well as the streamfunction in the reference frame moving with the c = 0.5 
contour. ( b )  Sketch of the topological nature of the streamline pattern. Notice the off-axis saddle 
point. There is no reverse-flow region along the axis, so that fluid 1 is ejected in the downstream 
direction from the finger tip. 
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FIGURE 16. (a )  Unsteady evolution of the concentration field for R = 3, F = -49.78, and P e  = 1600. 
Times are t = 4, 12, and 18. Also shown i s  the streamline pattern in the reference frame moving 
with the c = 0.5 contour at t = 18, as well as a sketch of its topology (b).  A closed, toroidal 
recirculation region forms that leads to a ‘pinch-off ’-like phenomenon near the finger tip. 

different topology (cf. figure 15b), with a saddle point located off the tube axis, but 
no stagnation point on the tube axis, so that fluid 1 can leak from the finger tip 
and form the ‘needle shape’ that is observed in the experiments of Part 1 as well. It 
should be pointed out that for steady, immiscible flow the above toplogical pattern 
does not represent a possible solution in the reference frame moving with the finger 

For R = 3 ,  F = -49.78, and P e  = 1600, the topological complexity of the velocity 
field has further increased (figure 16), and we observe a toroidal, closed recirculation 
bubble inside the finger, as indicated in the sketch of the topological structure of 
the streamline pattern, cf. figure 16(b). As for the case depicted in figure 15, the 
streamline pattern in the reference frame moving with the c = 0.5 contour does not 
exhibit a stagnation point on the centreline, so that fluid continues to be ejected from 
the finger tip. Near the tip, the recirculation zone transports fluid 1 away from the 
centreline towards larger radii, thereby creating a steep concentration front on the 
side of the finger tip. A short distance further upstream, fluid is convected from larger 
to smaller radii, so that the concentration field appears headed towards a ‘pinch-off’ 
of the finger tip, i.e., the formation of a bubble. As discussed in Part 1, the dye 

tip. 
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FIGURE 18. Tip velocity as a function of the gravity parameter F for different values of R. Over 
most of the F-interval, a linear relationship provides a reasonable fit to the data. o, R=2; x, R=3; 
*, R=4; +, R=5. 
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figure 18. 0, R=2; x, R=3; *, R=4; f, R=5. 
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Navier-Stokes equations, independent of the x-dependence of the concentration. As 
a result, for small radial variations of c we expect Taylor's (1953) work on passive 
dispersion in Poiseuille flow to provide some guidance for the analysis of the flow 
development in the low-Pe regime. In particular, under the assumption that 

(4.10) 
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FIGURE 20. Evolution of the concentration field for R = 5,  F = 0, and P e  = 100. Times are 
t = 1, 3, 10, and 25. At these low Pe values, the concentration front spreads diffusively, so that a 
quasi-steady state does not form. 
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i.e. that axial diffusion is much less significant than radial diffusion, Taylor shows 
that convective effects on the concentration field will be small compared to diffusive 
effects if 

6 58 
d P e  > C2, _ _  (4.11) 

where 6 is a measure of the thickness of the smeared out front, and C2 > 1. 
Consequently, we would expect to see small concentration differences in the radial 
direction, and hence Poiseuille flow, once the dimensionless thickness of the smeared 
out front has reached a transitional range of values that increase linearly with 
Pe. If we take 6 as the distance along the centreline between the 0.1 and 0.9 
concentration contours, then figure 20 indicates that for P e  = 100 and t = 10 we 
have 586/ (Ped)  x: 3.5. Figure 21 shows the fluid velocity at the centreline location 
where the concentration averaged over the tube cross-section 

d l 2  
c,(x, t )  = $1 rc(x, r ,  t)dr (4.12) 

has the value of 0.5. The graph confirms that by this time the velocity has indeed 
decayed to near Poiseuille flow. The velocity field has become similarly close to 
Poiseuille flow for Pe = 200 and t = 22 (figure 22a), and for P e  = 400 and t = 38 
(figure 22b), when 586/ (Ped)  x: 3.5 as well. These results confirm the above scaling 
considerations and indicate that C2 = 3.5 is an appropriate value. We can hence 
conclude that Poiseuille flow will be reached approximately when 

6 P e  
dx :2 : .  (4.13) 
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FIGURE 21. Propagation velocity of the x-location at which the concentration averaged over the 
cross-section c,(x,t) = 0.5. R = 5 ,  F = 0, and Pe  = 100 (--), 200 (- - -), and 400 (- . - . -). In all 
cases the velocity asymptotically approaches the value of 0.5 predicted by Taylor (1953) for passive 
dispersion in Poiseuille flow. 
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FIGURE 22. Concentration field for R = 5, F = 0, and: ( a )  P e  = 200 at t = 20, 
( b )  P e  = 400 at t = 38. 

Taylor furthermore provides an expression for 6 as a function of time and what by 
now has become known as the Taylor dispersion coefficient k : 

6 = 3.62(kt)'". (4.14) 

Here k is related to the tube diameter, the centreline velocity U of the Poiseuille flow, 
and the diffusion coefficient as 

(4.15) 

With the above estimate (4.13) for 6 / d  by the time Poiseuille flow is reached, we can 
now estimate the dimensionless time it takes to approach Poiseuille flow. Notice that, 
strictly speaking, we estimate the time until Poiseuille flow is established on the basis 
of a relationship that assumes Poiseuille flow already exists. Nevertheless, as we will 
see below, this approach leads to reasonably good results. We obtain 

t = 0.23Pe. (4.16) 
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FIGURE 23. The derivative ac,/ax of the concentration averaged over the tube cross-section for 
R = 5 and Pe = 100. Times are t = 10, 15, 20, and 25. The profile asymptotically approaches a 
Gaussian shape, as predicted by Taylor (1953) for passive dispersion in Poiseuille flow. 
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FIGURE 24. Propagation velocity of the x-location where c = 0.9. R = 5, F = 0, and Pe = 100 (-), 
200 (- - -), and 400 (- . - . -), respectively. The time after which the asymptotic propagation velocity 
is approached increases linearly with Pe. 

Consequently, after this time the cross-section-averaged concentration profile cm(x, t )  
should approach the shape of an error function. Equivalently, dc,/dx should take 
the form of a Gaussian. Figure 23 demonstrates this tendency, although at t = 25 
the derivative of the concentration still exhibits a slight asymmetry. Figure 24 shows 
the propagation velocity of the c = 0.9 concentration contour for Pe  = 100, 200, and 
400, as a function of time. For all three cases, an asymptotic state is reached, after a 
time that increases linearly with Pe, in agreement with the above scaling arguments. 
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5. Variable diffusion coefficient 
As discussed above, a comparison of the flow visualization experiments with the 

numerical simulations for the capillary tube shows good agreement for large values of 
Pe, while there are some discrepancies at lower values of this parameter. Specifically, 
in the experiments the film thickness attains its asymptotic state only for much higher 
values of Pe, typically 0(104), as compared to the simulations, where the value is 
closer to O(103). For reasons discussed in Part 1, no experiments were conducted 
below Pe values of lo3. 

The experimental measurements of the diffusion coefficient between glycerine and 
the glycerine-water mixture in Part 1 display a pronounced asymmetry of the time- 
dependent concentration profile, in addition to a shift in the location of the maximum 
gradient. This indicates that the diffusion coefficient varies with the local concentra- 
tion. Hence, in a more accurate simulation of the flow, P e  should be treated as a 
concentration-dependent parameter Pe(c).  

The experimentally measured one-dimensional concentration profiles in Part 1 
provide some guidance towards quantifying the dependence of the diffusion coefficient 
D on the concentration c. For this purpose, we consider the one-dimensional diffusion 
equation 

Rewriting it as 

demonstrates that the dependence of the diffusion coefficient on the concentration 
introduces a convection-like effect into the evolution equation for the concentration, 
with an effective local velocity 

dD c?c 
dc c'x 

U r f f ( X ,  t )  = -- - (5 .3)  

In particular, the effective propagation velocity ud jc,,=o of the concentration value 
at the inflection point, characterized by c, = 0, is given by 

ul, -0 = - -- 
\ \ -  (5.4) 

The experimental profiles at successive times can be used to estimate both this effective 
velocity and the instantaneous local concentration gradient, thereby providing us with 
an estimate of dD/dc at the concentration value of the inflection point. This procedure 
can be repeated for mixtures of different glycerine concentrations in order to obtain 
estimates of dD/dc at different concentrations. Figure 25 indicates that this quantity 
stays nearly constant over a wide range of concentrations, so that the assumption of 
a linear relationship between D and c 

dD 
dc 

D(c) = Do + -C (5.5) 

represents a reasonably accurate first attempt at investigating the effect of a 
concentration-dependent diffusion coefficient on the overall finger dynamics. DO 
or, alternatively, the ratio a of the diffusion coefficients at c = 0 and c = 1 can 
be determined approximately by comparing the degree of asymmetry of the dc/dx- 
profiles at different times in one-dimensional test calculations with their experimental 
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FIGURE 25.  Estimated values of uJ,,,=o/c,Jc,=o from experimental data for different times and 
concentrations. This nearly constant value suggests a linear relationship between D and c over a 
wide range of c. 
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FIGURE 26. (a) Comparison of experimental (- - -) and numerical (-) one-dimensional ac/ax-profiles 
at different times for a = 40. The close agreement validates the assumption of a linear 
(D, c)-relationship. (b)  Diffusion coefficient in a water-glycerine mixture, as a function of the 
local concentration. 

counterparts. Figure 26(a) shows such a comparison of experimental and numeri- 
cal &/ax-profiles at different times for R = 5.52 and a = 40, indicating that the 
assumption of a linear (D, c)-relationship works reasonably well. The resulting (D, c)- 
relationship, shown in figure 26( b), agrees reasonably well with the experimental 
estimates in Part 1, where, in a slightly different way, was an estimate of a = 26.5 (cf. 
their figure 5). 
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FIGURE 27. Evolution of the concentration field for R=5.52 with time for times 5, 10 and 15. The 
diffusion coefficient is concentration dependent, so that the value of P e  varies between 195 and 
approximately 4000 across the front. 
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The variation of the diffusion coefficient by a factor of O(40) across the concen- 
tration front allows for the development of fingers with a smooth variation of the 
concentration in the interior, and well-defined sharp outer edges, as seen in figure 27 
for R = 5.52, corresponding to the displacement of glycerine by a 50%-mixture of 
glycerine and water. The ratio u of the diffusion coefficients in the mixture and in 
pure glycerine is about 20, so that Pe  varies between 195 and approximately 4000 
across the front. While the finger maintains a steep leading edge for a fairly long time, 
its tip velocity does not exhibit the plateau-like nature characteristic of a quasi-steady 
state. 

6. Additional stresses in miscible flows 
As discussed earlier, the assumption of vanishing divergence represents an approx- 

imation for miscible fluids of different densities. In the following, we will attempt to 
predict in which parameter regimes the additional stresses related to this effect will 
be most pronounced. For the purpose of estimating the relative importance of the 
stresses related to the divergence of the velocity field, we assume that these stresses 
are related to the magnitude of the divergence by a constant proportionality factor 
6. Following Joseph & Hu (1991), we can estimate the magnitude of the divergence 
of the velocity vector as 

v - [D(c)Vc] . (6-1) 
P1 - P2 v . u =  ___ 

P1 

If we assume that, to a first approximation, D is constant and p1 - p2 - c1 - c2 = Ac, 
we obtain 

(6.2) 
This effect is expected to be largest where the concentration front is steepest, i.e. 
near the finger tip. In order to estimate d2c/dx’ at the finger tip, we can employ the 

V . U  N ( ~ 1  - ~ 2 )  DV2c. 
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same one-dimensional convection-diffusion model used 
thickness 6,. We find 

AC VtipAc c,, - 2 - __ 

where d denotes the tube diameter, which results in 

V - u  - ( A c ) ~  --. 

6, Dd 

Vtip 

d 

above to estimate the front 

(6.3) 

Both Ac and Vtip/d increase as At +. 1, so that the related stress should reach its 
largest value in this limit. 

For the second source of additional stresses in miscible liquids mentioned above, 
i.e. the different chemical potentials of the two liquids, scaling considerations can 
prove helpful as well. For the pressure jump across a spherical miscible interface due 
to the chemical potential effect we follow Davis (1988) as well as Joseph & Hu (1991) 
and write 

Ap - g d r  r (6.5) 

where CT is a material constant, and r-1 and r-2 are on opposite sides of the concentration 
layer. For scaling purposes, the axisymmetric tip of the finger in the capillary tube 
can be approximated as being locally spherical. Furthermore, since the thickness of 
the concentration layer at the finger tip is much smaller than the finger tip radius, the 
factor l / r  can be pulled out of the integral. By again employing our earlier estimate 
of the concentration layer thickness from a balance of strain and diffusion, we obtain 

For the pressure difference across the finger tip, this results in 

Consequently, the additional stresses in the form of a pressure difference related to 
the chemical potential should be most pronounced as At -P 1 and P e  increases. 

Both of the above extra stress terms reach their largest values as At -+ 1 and 
Pe increases, which is the regime where we observe very good agreement between 
the numerical simulations and the experiments in Part 1. However, this cannot be 
interpreted as conclusive evidence that the extra stress terms are unimportant. In 
order to evaluate their relevance in the present flow, it is helpful to evaluate their 
relative strength as compared to the viscous stresses, which are also expected to reach 
maximum values when steep fronts exist in the flow. A representative term of the 
viscous stress tensor is 

z - 2 ax (g). 
At the finger tip we can again approximate the velocity field as that of a stagnation 
point, so that u depends linearly on x, which leads to 

(6.10) 
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With the same estimate for the strain field as above, and with p2+p l ,  this results in 
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(6.11) 

For the ratio of stresses induced by the different chemical potentials and viscous 
stresses, we thus obtain 

(6.12) 

This ratio increases as the viscosity of the displaced fluid and the tip velocity decrease, 
i.e. with decreasing Pe  and At. Similarly, the ratio of stresses due to divergence in the 
velocity field and viscous stresses scales as 

(6.13) 

Again, the omitted stresses due to the divergence of the velocity field increase in 
relative importance with decreasing Pe  and At.  The above arguments indicate that 
the extra stresses analysed by Joseph and coworkers, when compared to the viscous 
stresses, can become relatively more important in those flow regimes where steep 
fronts do not exist. In the regime of large P e  and At ,  we observe very good agreement 
between our simulations, which omit these stresses, and the experiments in Part 1. 
However, for smaller values of these parameters some differences between the two 
exist, and we cannot exclude the possibility that they are at least partially due to the 
influence of these extra stresses. 

7. Conclusions 
The present computational research effort, in conjunction with the accompanying 

experiments in Part 1, has been directed at elucidating the dynamics of miscible 
displacement processes in capillary tubes and, to a lesser extent, in plane two- 
dimensional channels. Based on the Stokes equations, we investigated the flow that is 
generated if a fluid of given viscosity and density displaces a second fluid of different 
such properties. The main dimensionless quantities are the Peclet number, the Atwood 
number, and a gravity parameter. Further dimensionless parameters arise from the 
dependence on the concentration of various physical properties, such as viscosity and 
the diffusion coefficient. Strict dynamical similarity can be obtained only if all of 
these parameters are matched in different experiments. However, the behaviour of 
most of the global quantities of practical interest, such as the fraction of displaced 
fluid left behind, is usually dominated by P e , A t ,  and F .  

One of the main findings concerns the identification of two distinct P e  regimes, 
which are separated by a transitional region. For large values of Pe,  typically above 
0(103), we observe the formation of a quasi-steady flow near the finger tip, which 
is characterized by a sharp concentration front. Scaling laws for the front thickness 
and the maximum concentration gradient show good agreement with the numerical 
results. This quasi-steady state persists until the time it takes the finger to reach 
a certain length that is proportional to Pe. Around this time, the concentration 
layers on the side of the finger begin to diffuse into each other, thereby cutting 
off the supply of uncontaminated displacing fluid. Eventually, the initially steep 
concentration fronts will decay and Poiseuille flow with Taylor dispersion will develop 
asymptotically. 
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In the small-Pe regime, typically below O( lo3), the quasi-steady state never forms, 
and the flow asymptotically approaches Taylor dispersion from the start. For this 
case, a scaling law for the time it takes to reach Poiseuille flow and Taylor dispersion 
exhibits good agreement with the numerical data. 

For the large-Pe regime, we find close agreement between the simulations and the 
accompanying experiments in Part 1. This is exemplified by the data for the film 
thickness as a function of At, in the limit of large Pe. Depending on the importance 
of gravitational forces, the finger tip velocity can be larger or smaller than the 
centreline velocity of the unperturbed Poiseuille flow. Accordingly, we find a variety 
of accompanying streamline patterns near the finger tip, among them those outlined 
by Taylor (1961) for immiscible flows. In particular, for some parameters closed 
toroidal recirculation zones inside the finger tip are observed, which can explain the 
experimentally observed deformations of the interface between the dye and the clear 
fluid. 

In order to clarify the remaining differences between experimental and numer- 
ical observations, we focused on several potentially important issues : First, we 
considered the concentration dependence of the diffusion coefficient. Experimen- 
tal data in Part 1 indicate that D can be smaller by a factor of O(30) in nearly 
pure glycerine than in nearly pure water. By incorporating this D(c)  dependence 
into the numerical simulations, we observed the evolution of fingers that exhib- 
ited steep external concentration fronts along with smooth concentration fields on 
the inside of the finger, at moderate values of Pe. Another point concerns the 
viscosity-concentration relationship. In the numerical simulations, we assumed an 
exponential behaviour, in line with earlier investigations by other authors. For the 
particular liquids employed in the experiments, on the other hand, it is pointed 
out in Part 1 that for glycerine concentrations above 0.2, the viscosity of the mix- 
ture depends on the concentration in a nearly double-exponential fashion. For 
large values of Pe, the exact form of the relationship is not expected to be of 
much importance, as its effects are limited to very thin concentration layers. At 
small Pe, on the other hand, concentration gradients occur in large portions of the 
flow field, and the details of the (p,c)-relationship could have a more significant 
effect. 

Additional sources of discrepancies between experiments and simulations concern 
the potential effect of Korteweg stresses, as well as the approximative nature of the 
assumption of a divergence-free velocity field. Straightforward scaling arguments 
indicate that these stresses should be strongest when steep concentration fronts exist, 
i.e. at large values of P e  and At. However, their relative importance compared to 
viscous stresses may be larger at lower values of these parameters, and we cannot 
exclude the possibility that the discrepancies we observe between experiments and 
simulations in this regime are partially due to these effects. 
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Appendix. Two-dimensional flow in plane channel 
For the two-dimensional flow in a plane channel, a corresponding set of governing 

equations and boundary conditions holds. Again, the equations are most conveniently 
solved by casting them into a streamfunction-vorticity formulation. The same numer- 
ical solution procedures as for the capillary tube case can then be applied, along with 
the corresponding computational inflow and outflow boundary conditions. While our 
observations for the plane channel flow overall are similar to those described above 
for the capillary tube, it is worthwhile to discuss a few of the results in more detail. 

As for the capillary tube, we observe quasi-steady fingers for large values of P e .  A 
corresponding scaling assumption for the strain 

h 

where h denotes the channel width, leads to an estimate for the maximum finger 
length 

(A 2) - = 0.296Pe. 
h 

By again carrying out an extrapolation procedure in order to obtain asymptotic values 
for the film thickness as a function of the viscosity ratio, we arrive at the (m,At)-  
relationship depicted in figure 28. An interesting similarity exists between the (m, A t )  
curves for the round tube and the plane channel. After adjusting for the difference in 
film thicknesses at At = 0, the curves collapse to within the accuracy of the numerical 
data. 

if  gravity is included in the simulations, similar effects are observed as in the round 
tube case. In particular, it is found that the topological transition leading to the 
emergence of a thin protrusion from the finger tip exists for the plane channel flow 
as well. Figure 29 shows an example of the concentration and streamline patterns for 
R = 3,  F = -51.8, and Pe = 1600 which demonstrates the existence of several closed 
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FIGURE 31. rn, F-relationships for the different values of R, along with the least-squares fits of 
figure 30. 0, R=2; x, R=3; *, R=4. 

recirculation regions within the finger. Over the range of gravity parameter values 
explored, the finger tip velocity again varies in a nearly linear fashion (figure 30), and 
we can obtain reasonably accurate least-squares fits of straight lines. These in turn 
lead to the (rn,F) curves shown in figure 31. 

In order to derive the relevant scaling laws for the diffusion-dominated regime of 
lower Pe  values, one can repeat Taylor's (1953) analysis of dispersion in a round 
tube for plane channels. The resulting effective Taylor dispersion coefficient given by 
Horne & Rodriguez (1983) is 

2U2h2 
9450 ' 

k = -  

It leads to an estimated dimensionless time to approach Poiseuille flow of 

t NN 0.4Pe (A 4) 

which is quite similar to the result for flow in a capillary tube. Again, these scaling 
results are confirmed by the simulations. 
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